Describing MANETs: Principal Component Analysis for Sparse Mobility Traces

نویسندگان

  • Hector D. Flores
  • Stephan Eidenbenz
  • Rudolf H. Riedi
  • Nicholas Hengartner
چکیده

Data collected in realistic mobility traces for mobile ad hoc networks (MANETS) is intrinsically high dimensional. Principal Component Analysis (PCA) is a good tool for reducing the data dimemsion by extracting important features of the data. We propose a method for computing principal components using iterative regression for high dimensional matricies with missing values with an application to node degree time series. We expand this method to handle an additional dimension of information for a defined neighborhood ancestry of node degree, exposing patterns when they exist. We test our methodology on node degree data from a simulated university campus model (Pedsims) and real campus data. Results indicate that in both cases, the student’s major field of study along with class schedule are strong factors to differentiate mobile node degree time series. The ability to detect differences is a powerful tool for application specific network management, allowing for: optimal placement of routers, design of specialized protocols for various user populations and lending insight to gauging the energy/bandwidth needs of mobile devices. Supported in part from NSF, grant number ANI-0338856, Texas ATP, project number 0036040036-2003 and Los Alamos National Laboratory, (CCS-5)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Dynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs

Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Poster Abstract: Throughput-Delay Tradeoff in Small and Sparse Mobile Ad hoc Networks

The asymptotic throughput-delay tradeoff has been extensively studied for dense wireless mobile ad hoc networks (MANETs) as a function of increasing density. However, many practical applications exist for sparse MANETs where mobile node density goes to zero and the number of nodes is small. Asymptotic throughput-delay laws discovered for dense networks need not identically hold in this sparse r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006